Skip to main content


Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster

Joseph A. Fournier, Christopher J. Johnson, Conrad T. Wolke, Gary H. Weddle, Arron B. Wolk, and Mark A. Johnson
Research Areas: Hydrogen Predissociation | Protonated Water Clusters

The way in which a three-dimensional network of water molecules accommodates an excess proton is hard to discern from the broad vibrational spectra of dilute acids.  The sharper bands displayed by cold gas phase clusters, H+(H2O)n, are therefore useful because they encode the network-dependent speciation of the proton defect and yet are small enough to be accurately treated with electronic structure theory.  Here we identify the previously elusive spectral signature of the proton defect in the three-dimensional cage structure adopted by the particularly stable H+(H2O)21 cluster.  Cryogenically cooling the ion and tagging it with loosely bound deuterium (D2) enabled detection of its vibrational spectrum over the 600 to 4000 cm-1 range.  The excess charge is consistent with a tri-coordinated H3O+ moiety embedded on the surface of a clathrate-like cage.